Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Neoplasia ; 23(10): 1048-1058, 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34543857

ABSTRACT

Lung cancer is the second leading cause of cancer death worldwide and is strongly associated with cisplatin resistance. The transcription factor signal transducer and activator of transcription 3 (STAT3) is constitutively activated in cancer cells and coordinates critical cellular processes as survival, self-renewal, and inflammation. In several types of cancer, STAT3 controls the development, immunogenicity, and malignant behavior of tumor cells while it dictates the responsiveness to radio- and chemotherapy. It is known that STAT3 phosphorylation at Ser727 by mechanistic target of rapamycin (mTOR) is necessary for its maximal activation, but the crosstalk between STAT3 and mTOR signaling in cisplatin resistance remains elusive. In this study, using a proteomic approach, we revealed important targets and signaling pathways altered in cisplatin-resistant A549 lung adenocarcinoma cells. STAT3 had increased expression in a resistance context, which can be associated with a poor prognosis. STAT3 knockout (SKO) resulted in a decreased mesenchymal phenotype in A549 cells, observed by clonogenic potential and by the expression of epithelial-mesenchymal transition markers. Importantly, SKO cells did not acquire the mTOR pathway overactivation induced by cisplatin resistance. Consistently, SKO cells were more responsive to mTOR inhibition by rapamycin and presented impairment of the feedback activation loop in Akt. Therefore, rapamycin was even more potent in inhibiting the clonogenic potential in SKO cells and sensitized to cisplatin treatment. Mechanistically, STAT3 partially coordinated the cisplatin resistance phenotype via the mTOR pathway in non-small cell lung cancer. Thus, our findings reveal important targets and highlight the significance of the crosstalk between STAT3 and mTOR signaling in cisplatin resistance. The synergic inhibition of STAT3 and mTOR potentially unveil a potential mechanism of synthetic lethality to be explored for human lung cancer treatment.

2.
Front Cell Dev Biol ; 9: 698503, 2021.
Article in English | MEDLINE | ID: mdl-34395429

ABSTRACT

CD30, a member of the TNF receptor superfamily, is selectively expressed on a subset of activated lymphocytes and on malignant cells of certain lymphomas, such as classical Hodgkin Lymphoma (cHL), where it activates critical bystander cells in the tumor microenvironment. Therefore, it is not surprising that the CD30 antibody-drug conjugate Brentuximab Vedotin (BV) represents a powerful, FDA-approved treatment option for CD30+ hematological malignancies. However, BV also exerts a strong anti-cancer efficacy in many cases of diffuse large B cell lymphoma (DLBCL) with poor CD30 expression, even when lacking detectable CD30+ tumor cells. The mechanism remains enigmatic. Because CD30 is released on extracellular vesicles (EVs) from both, malignant and activated lymphocytes, we studied whether EV-associated CD30 might end up in CD30- tumor cells to provide binding sites for BV. Notably, CD30+ EVs bind to various DLBCL cell lines as well as to the FITC-labeled variant of the antibody-drug conjugate BV, thus potentially conferring the BV binding also to CD30- cells. Confocal microscopy and imaging cytometry studies revealed that BV binding and uptake depend on CD30+ EVs. Since BV is only toxic toward CD30- DLBCL cells when CD30+ EVs support its uptake, we conclude that EVs not only communicate within the tumor microenvironment but also influence cancer treatment. Ultimately, the CD30-based BV not only targets CD30+ tumor cell but also CD30- DLBCL cells in the presence of CD30+ EVs. Our study thus provides a feasible explanation for the clinical impact of BV in CD30- DLBCL and warrants confirming studies in animal models.

3.
Mol Cell Proteomics ; 20: 100118, 2021.
Article in English | MEDLINE | ID: mdl-34186243

ABSTRACT

Oral squamous cell carcinoma (OSCC) has high mortality rates that are largely associated with lymph node metastasis. However, the molecular mechanisms that drive OSCC metastasis are unknown. Extracellular vesicles (EVs) are membrane-bound particles that play a role in intercellular communication and impact cancer development and progression. Thus, profiling EVs would be of great significance to decipher their role in OSCC metastasis. For that purpose, we used a reductionist approach to map the proteomic, miRNA, metabolomic, and lipidomic profiles of EVs derived from human primary tumor (SCC-9) cells and matched lymph node metastatic (LN1) cells. Distinct omics profiles were associated with the metastatic phenotype, including 670 proteins, 217 miRNAs, 26 metabolites, and 63 lipids differentially abundant between LN1 cell- and SCC-9 cell-derived EVs. A multi-omics integration identified 11 'hub proteins' significantly decreased at the metastatic site compared with primary tumor-derived EVs. We confirmed the validity of these findings with analysis of data from multiple public databases and found that low abundance of seven 'hub proteins' in EVs from metastatic lymph nodes (ALDH7A1, CAD, CANT1, GOT1, MTHFD1, PYGB, and SARS) is correlated with reduced survival and tumor aggressiveness in patients with cancer. In summary, this multi-omics approach identified proteins transported by EVs that are associated with metastasis and which may potentially serve as prognostic markers in OSCC.


Subject(s)
Extracellular Vesicles/metabolism , Mouth Neoplasms/metabolism , Animals , Cell Line , Humans , Metabolomics , Mice , MicroRNAs , Mouth Neoplasms/genetics , Prognosis , Proteomics
4.
Int J Oncol ; 58(6)2021 06.
Article in English | MEDLINE | ID: mdl-33846781

ABSTRACT

Lung cancer is the leading cause of cancer­associated death worldwide and exhibits intrinsic and acquired therapeutic resistance to cisplatin (CIS). The present study investigated the role of mTOR signaling and other signaling pathways after metformin (MET) treatment in control and cisplatin­resistant A549 cells, mapping pathways and possible targets involved in CIS sensitivity. MTT, flow cytometry, clonogenic assay, western blotting, proteomic analysis using the Stable Isotope Labeling by Amino acids in Cell culture (SILAC) approach and reverse transcription­quantitative PCR were performed. The results revealed that CIS treatment induced mTOR signaling pathway overactivation, and the mTOR status was restored by MET. MET and the mTOR inhibitor rapamycin (RAPA) decreased the viability in control and resistant cells, and decreased the cell size increase induced by CIS. In control cells, MET and RAPA decreased colony formation after 72 h and decreased IC50 values, potentiating the effects of CIS. Proteomics analysis revealed important pathways regulated by MET, including transcription, RNA processing and IL­12­mediated signaling. In CIS­resistant cells, MET regulated the apoptotic process, oxidative stress and G2/M transition. Annexin 4 (ANXA4) and superoxide dismutase 2 (SOD2), involved in apoptosis and oxidative stress, respectively, were chosen to validate the SILAC analysis and may represent potential therapeutic targets for lung cancer treatment. In conclusion, the chemosensitizing and antiproliferative effects of MET were associated with mTOR signaling and with potential novel targets, such as ANXA4 and SOD2, in human lung cancer cells.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Cisplatin/pharmacology , Drug Resistance, Neoplasm/drug effects , Lung Neoplasms/drug therapy , Metformin/pharmacology , A549 Cells , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cisplatin/therapeutic use , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Metabolic Networks and Pathways/drug effects , Metabolic Networks and Pathways/genetics , Metformin/therapeutic use , Signal Transduction/drug effects , Signal Transduction/genetics , TOR Serine-Threonine Kinases/metabolism
5.
Redox Biol ; 37: 101735, 2020 10.
Article in English | MEDLINE | ID: mdl-33011677

ABSTRACT

The activity of Thioredoxin-1 (Trx-1) is adjusted by the balance of its monomeric, active and its dimeric, inactive state. The regulation of this balance is not completely understood. We have previously shown that the cytoplasmic domain of the transmembrane protein A Disintegrin And Metalloprotease 17 (ADAM17cyto) binds to Thioredoxin-1 (Trx-1) and the destabilization of this interaction favors the dimeric state of Trx-1. Here, we investigate whether ADAM17 plays a role in the conformation and activation of Trx-1. We found that disrupting the interacting interface with Trx-1 by a site-directed mutagenesis in ADAM17 (ADAM17cytoF730A) caused a decrease of Trx-1 reductive capacity and activity. Moreover, we observed that ADAM17 overexpressing cells favor the monomeric state of Trx-1 while knockdown cells do not. As a result, there is a decrease of cell oxidant levels and ADAM17 sheddase activity and an increase in the reduced cysteine-containing peptides in intracellular proteins in ADAM17cyto overexpressing cells. A mechanistic explanation that ADAM17cyto favors the monomeric, active state of Trx-1 is the formation of a disulfide bond between Cys824 at the C-terminal of ADAM17cyto with the Cys73 of Trx-1, which is involved in the dimerization site of Trx-1. In summary, we propose that ADAM17 is able to modulate Trx-1 conformation affecting its activity and intracellular redox state, bringing up a novel possibility for positive regulation of thiol isomerase activity in the cell by mammalian metalloproteinases.


Subject(s)
ADAM17 Protein , Cysteine , Thioredoxins , Cysteine/metabolism , HEK293 Cells , Humans , Molecular Conformation , Oxidation-Reduction , Sulfhydryl Compounds , Thioredoxins/genetics , Thioredoxins/metabolism
6.
Biochemistry ; 57(44): 6293-6307, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30295466

ABSTRACT

Phosphate-activated glutaminases catalyze the deamidation of glutamine to glutamate and play key roles in several physiological and pathological processes. In humans, GLS encodes two multidomain splicing isoforms: KGA and GAC. In both isoforms, the canonical glutaminase domain is flanked by an N-terminal region that is folded into an EF-hand-like four-helix bundle. However, the splicing event replaces a well-structured three-repeat ankyrin domain in KGA with a shorter, unordered C-terminal stretch in GAC. The multidomain architecture, which contains putative protein-protein binding motifs, has led to speculation that glutaminases are involved in cellular processes other than glutamine metabolism; in fact, some proteins have been identified as binding partners of KGA and the isoforms of its paralogue gene, GLS2. Here, a yeast two-hybrid assay identified nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) as a new binding partner of the glutaminase. We show that KGA and GAC directly bind PPARγ with a low-micromolar dissociation constant; the interaction involves the N-terminal and catalytic domains of glutaminases as well as the ligand-binding domain of the nuclear receptor. The interaction occurs within the nucleus, and by sequestering PPARγ from its responsive element DR1, the glutaminases decreased nuclear receptor activity as assessed by a luciferase reporter assay. Altogether, our findings reveal an unexpected glutaminase-binding partner and, for the first time, directly link mitochondrial glutaminases to an unanticipated role in gene regulation.


Subject(s)
Gene Expression Regulation , Glutaminase/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Transcription, Genetic , Glutamine/metabolism , Humans , Luciferases/metabolism , Models, Molecular , PPAR gamma/chemistry , Protein Conformation , Protein Domains , Protein Isoforms
7.
PLoS One ; 13(10): e0206051, 2018.
Article in English | MEDLINE | ID: mdl-30359420

ABSTRACT

Paracoccidioidomycosis (PCM) is a systemic disease caused by thermodymorphic fungi of the Paracoccidioides brasiliensis complex, (Paracoccidioides spp.). Patients with PCM reveal specific cellular immune impairment. Despite the effective treatment, quiescent fungi can lead to relapse, usually late, the serological diagnosis of which has been deficient. The present study was carried out with the objective of investigating a biomarker for the identification of PCM relapse and another molecule behaving as an immunological recovery biomarker; therefore, it may be used as a cure criterion. In the evolutionary analysis of the proteins identified in PCM patients, comparing those that presented with those that did not reveal relapse, 29 proteins were identified. The interactions observed between the proteins, using transferrin and haptoglobin, as the main binding protein, were strong with all the others. Patient follow-up suggests that cerulosplamin may be a marker of relapse and that transferrin and apolipoprotein A-II may contribute to the evaluation of the treatment efficacy and avoiding a premature decision.


Subject(s)
Apolipoprotein A-II/blood , Ceruloplasmin/metabolism , Paracoccidioidomycosis/blood , Transferrin/metabolism , Adult , Aged , Aged, 80 and over , Female , Follow-Up Studies , Humans , Male , Middle Aged , Protein Interaction Maps , Recurrence , Treatment Outcome , Young Adult
8.
Nat Commun ; 9(1): 3598, 2018 09 05.
Article in English | MEDLINE | ID: mdl-30185791

ABSTRACT

Different regions of oral squamous cell carcinoma (OSCC) have particular histopathological and molecular characteristics limiting the standard tumor-node-metastasis prognosis classification. Therefore, defining biological signatures that allow assessing the prognostic outcomes for OSCC patients would be of great clinical significance. Using histopathology-guided discovery proteomics, we analyze neoplastic islands and stroma from the invasive tumor front (ITF) and inner tumor to identify differentially expressed proteins. Potential signature proteins are prioritized and further investigated by immunohistochemistry (IHC) and targeted proteomics. IHC indicates low expression of cystatin-B in neoplastic islands from the ITF as an independent marker for local recurrence. Targeted proteomics analysis of the prioritized proteins in saliva, combined with machine-learning methods, highlights a peptide-based signature as the most powerful predictor to distinguish patients with and without lymph node metastasis. In summary, we identify a robust signature, which may enhance prognostic decisions in OSCC and better guide treatment to reduce tumor recurrence or lymph node metastasis.


Subject(s)
Biomarkers, Tumor/analysis , Carcinoma, Squamous Cell/mortality , Mouth Neoplasms/mortality , Neoplasm Recurrence, Local/diagnosis , Proteomics/methods , Carcinoma, Squamous Cell/diagnosis , Carcinoma, Squamous Cell/pathology , Clinical Decision-Making , Female , Follow-Up Studies , Humans , Immunohistochemistry , Lymphatic Metastasis , Machine Learning , Male , Middle Aged , Mouth Neoplasms/diagnosis , Mouth Neoplasms/pathology , Neoplasm Recurrence, Local/prevention & control , Peptides/analysis , Predictive Value of Tests , Prognosis , Retrospective Studies , Saliva/chemistry , Survival Rate
9.
PLoS One ; 13(8): e0202804, 2018.
Article in English | MEDLINE | ID: mdl-30157221

ABSTRACT

The sensitivity of the double agar gel immunodiffusion test is about 90% in patients with untreated paracoccidioidomycosis (PCM), but it is much lower in cases of relapse. In addition, serum from patients with PCM caused by Paracoccidioides lutzii, frequent in the Midwest region of Brazil, do not react with the classical antigen obtained from Pb B-339. These findings showed the need for alternative diagnostic methods, such as biological markers through proteomics. The aim of this study was to identify biomarkers for the safe identification of PCM relapse and specific proteins that could distinguish infections caused by Paracoccidioides brasiliensis from those produced by Paracoccidioides lutzii. Proteomic analysis was performed in serum from 9 patients with PCM caused by P. brasiliensis, with and without relapse, from 4 patients with PCM produced by P. lutzii, and from 3 healthy controls. The comparative evaluation of the 29 identified plasma proteins suggested that the presence of the immunoglobulin (Ig) alpha-2 chain C region and the absence of Ig heavy chain V-III TIL indicate infection by P. lutzii. In addition, the absence of complement factor B protein might be a predictor of relapse. The evaluation of these proteins in a higher number of patients should be carried out in order to validate these findings.


Subject(s)
Biomarkers/blood , Paracoccidioides/metabolism , Paracoccidioidomycosis/diagnosis , Proteomics , Adolescent , Adult , Aged, 80 and over , Antibodies, Fungal/chemistry , Antibodies, Fungal/immunology , Case-Control Studies , Chromatography, High Pressure Liquid , Female , Fungal Proteins/analysis , Fungal Proteins/metabolism , Humans , Male , Middle Aged , Paracoccidioides/isolation & purification , Paracoccidioidomycosis/microbiology , Recurrence , Risk , Tandem Mass Spectrometry
10.
Biochimie ; 154: 69-76, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30092248

ABSTRACT

The mitochondrial phosphate-activated glutaminase C (GAC) is produced by the alternative splicing of the GLS gene. Compared to the other GLS isoform, the kidney-type glutaminase (KGA), GAC is more enzymatically efficient and of particular importance for cancer cell growth. Although its catalytic mechanism is well understood, little is known about how post-translational modifications can impact GAC function. Here, we identified by mass spectrometry a phosphorylated serine at the GLS N-terminal domain (at position 95) and investigated its role on regulating GAC activity. The ectopic expression of the phosphomimetic mutant (GAC.S95D) in breast cancer cells, compared to wild-type GAC (GAC.WT), led to decreased glutaminase activity, glutamine uptake, glutamate release and intracellular glutamate levels, without changing GAC sub-cellular localization. Interestingly, cells expressing the GAC.S95D mutant, compared to GAC.WT, presented decreased migration and vimentin level, an epithelial-to-mesenchymal transition marker. These results reveal that GAC is post-translationally regulated by phosphorylation, which affects cellular glutamine metabolism and glutaminase-related cell phenotype.


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Glutaminase/metabolism , Mutation, Missense , Neoplasm Proteins/metabolism , Neoplasms/enzymology , Amino Acid Substitution , Cell Line, Tumor , Glutaminase/genetics , Humans , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , Phosphorylation
11.
Sci Rep ; 8(1): 3510, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29472561

ABSTRACT

The active transport of glycolytic pyruvate across the inner mitochondrial membrane is thought to involve two mitochondrial pyruvate carrier subunits, MPC1 and MPC2, assembled as a 150 kDa heterotypic oligomer. Here, the recombinant production of human MPC through a co-expression strategy is first described; however, substantial complex formation was not observed, and predominantly individual subunits were purified. In contrast to MPC1, which co-purifies with a host chaperone, we demonstrated that MPC2 homo-oligomers promote efficient pyruvate transport into proteoliposomes. The derived functional requirements and kinetic features of MPC2 resemble those previously demonstrated for MPC in the literature. Distinctly, chemical inhibition of transport is observed only for a thiazolidinedione derivative. The autonomous transport role for MPC2 is validated in cells when the ectopic expression of human MPC2 in yeast lacking endogenous MPC stimulated growth and increased oxygen consumption. Multiple oligomeric species of MPC2 across mitochondrial isolates, purified protein and artificial lipid bilayers suggest functional high-order complexes. Significant changes in the secondary structure content of MPC2, as probed by synchrotron radiation circular dichroism, further supports the interaction between the protein and ligands. Our results provide the initial framework for the independent role of MPC2 in homeostasis and diseases related to dysregulated pyruvate metabolism.


Subject(s)
Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membranes/chemistry , Pyruvic Acid/metabolism , Circular Dichroism , Gene Expression Regulation/genetics , Humans , Lipid Bilayers/chemistry , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membranes/metabolism , Monocarboxylic Acid Transporters , Protein Structure, Secondary/genetics , Pyruvic Acid/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
12.
Sci Rep ; 8(1): 3508, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29472641

ABSTRACT

To cope with toxic levels of H2S, the plant pathogens Xylella fastidiosa and Agrobacterium tumefaciens employ the bigR operon to oxidize H2S into sulfite. The bigR operon is regulated by the transcriptional repressor BigR and it encodes a bifunctional sulfur transferase (ST) and sulfur dioxygenase (SDO) enzyme, Blh, required for H2S oxidation and bacterial growth under hypoxia. However, how Blh operates to enhance bacterial survival under hypoxia and how BigR is deactivated to derepress operon transcription is unknown. Here, we show that the ST and SDO activities of Blh are in vitro coupled and necessary to oxidize sulfide into sulfite, and that Blh is critical to maintain the oxygen flux during A. tumefaciens respiration when oxygen becomes limited to cells. We also show that H2S and polysulfides inactivate BigR leading to operon transcription. Moreover, we show that sulfite, which is produced by Blh in the ST and SDO reactions, is toxic to Citrus sinensis and that X. fastidiosa-infected plants accumulate sulfite and higher transcript levels of sulfite detoxification enzymes, suggesting that they are under sulfite stress. These results indicate that BigR acts as a sulfide sensor in the H2S oxidation mechanism that allows pathogens to colonize plant tissues where oxygen is a limiting factor.


Subject(s)
Agrobacterium tumefaciens/genetics , Dioxygenases/genetics , Transferases/genetics , Xylella/genetics , Agrobacterium tumefaciens/metabolism , Dioxygenases/chemistry , Hydrogen Sulfide/metabolism , Hydrogen Sulfide/toxicity , Hypoxia/genetics , Hypoxia/metabolism , Operon/genetics , Oxygen/metabolism , Plants/genetics , Plants/microbiology , Stress, Physiological/genetics , Sulfides/chemistry , Transferases/chemistry , Xylella/metabolism
13.
Mol Plant Pathol ; 19(1): 143-157, 2018 01.
Article in English | MEDLINE | ID: mdl-27798950

ABSTRACT

Citrus canker is a plant disease caused by Gram-negative bacteria from the genus Xanthomonas. The most virulent species is Xanthomonas citri ssp. citri (XAC), which attacks a wide range of citrus hosts. Differential proteomic analysis of the periplasm-enriched fraction was performed for XAC cells grown in pathogenicity-inducing (XAM-M) and pathogenicity-non-inducing (nutrient broth) media using two-dimensional electrophoresis combined with liquid chromatography-tandem mass spectrometry. Amongst the 40 proteins identified, transglycosylase was detected in a highly abundant spot in XAC cells grown under inducing condition. Additional up-regulated proteins related to cellular envelope metabolism included glucose-1-phosphate thymidylyltransferase, dTDP-4-dehydrorhamnose-3,5-epimerase and peptidyl-prolyl cis-trans-isomerase. Phosphoglucomutase and superoxide dismutase proteins, known to be involved in pathogenicity in other Xanthomonas species or organisms, were also detected. Western blot and quantitative real-time polymerase chain reaction analyses for transglycosylase and superoxide dismutase confirmed that these proteins were up-regulated under inducing condition, consistent with the proteomic results. Multiple spots for the 60-kDa chaperonin and glyceraldehyde-3-phosphate dehydrogenase were identified, suggesting the presence of post-translational modifications. We propose that substantial alterations in cellular envelope metabolism occur during the XAC infectious process, which are related to several aspects, from defence against reactive oxygen species to exopolysaccharide synthesis. Our results provide new candidates for virulence-related proteins, whose abundance correlates with the induction of pathogenicity and virulence genes, such as hrpD6, hrpG, hrpB7, hpa1 and hrpX. The results present new potential targets against XAC to be investigated in further functional studies.


Subject(s)
Cell Membrane/metabolism , Periplasmic Proteins/metabolism , Proteomics , Xanthomonas/metabolism , Xanthomonas/pathogenicity , Bacterial Proteins/metabolism , Electrophoresis, Gel, Two-Dimensional , Models, Biological , Proteome/metabolism
14.
Toxins (Basel) ; 9(12)2017 11 23.
Article in English | MEDLINE | ID: mdl-29168766

ABSTRACT

Scorpion stings are the main cause of human envenomation in Brazil and, for the treatment of victims, the World Health Organization (WHO) recommends the use of antivenoms. The first step to achieve effective antivenom is to use a good quality venom pool and to evaluate it, with LD50 determination as the most accepted procedure. It is, however, time-consuming and requires advanced technical training. Further, there are significant ethical concerns regarding the number of animals required for testing. Hence, we investigated the correspondence between LD50 results, in vitro assays, and a strong correlation with proteolytic activity levels was observed, showing, remarkably, that proteases are potential toxicity markers for Tityus serrulatus venom. The comparison of reversed-phase chromatographic profiles also has a potential application in venoms' quality control, as there were fewer neurotoxins detected in the venom with high LD50 value. These results were confirmed by mass spectrometry analysis. Therefore, these methods could precede the LD50 assay to evaluate the venom excellence by discriminating-and discarding-poor-quality batches, and, consequently, with a positive impact on the number of animals used. Notably, proposed assays are fast and inexpensive, being technically and economically feasible in Tityus serrulatus venom quality control to produce effective antivenoms.


Subject(s)
Scorpion Venoms/chemistry , Scorpion Venoms/toxicity , Animals , Arthropod Proteins/analysis , Biological Assay , Chromatography, Reverse-Phase , Electrophoresis, Polyacrylamide Gel , Female , Hyaluronoglucosaminidase/metabolism , Lethal Dose 50 , Male , Mass Spectrometry , Nitrogen/analysis , Proteolysis , Scorpions
15.
Sci Rep ; 7(1): 5445, 2017 07 14.
Article in English | MEDLINE | ID: mdl-28710492

ABSTRACT

NEK family kinases are serine/threonine kinases that have been functionally implicated in the regulation of the disjunction of the centrosome, the assembly of the mitotic spindle, the function of the primary cilium and the DNA damage response. NEK1 shows pleiotropic functions and has been found to be mutated in cancer cells, ciliopathies such as the polycystic kidney disease, as well as in the genetic diseases short-rib thoracic dysplasia, Mohr-syndrome and amyotrophic lateral sclerosis. NEK1 is essential for the ionizing radiation DNA damage response and priming of the ATR kinase and of Rad54 through phosphorylation. Here we report on the structure of the kinase domain of human NEK1 in its apo- and ATP-mimetic inhibitor bound forms. The inhibitor bound structure may allow the design of NEK specific chemo-sensitizing agents to act in conjunction with chemo- or radiation therapy of cancer cells. Furthermore, we characterized the dynamic protein interactome of NEK1 after DNA damage challenge with cisplatin. Our data suggest that NEK1 and its interaction partners trigger the DNA damage pathways responsible for correcting DNA crosslinks.


Subject(s)
Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , DNA Repair , NIMA-Related Kinase 1/chemistry , Protein Kinase Inhibitors/chemistry , Antineoplastic Agents/chemistry , Binding Sites , Cisplatin/chemistry , Cloning, Molecular , Crystallography, X-Ray , DNA Damage , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Kinetics , Models, Molecular , NIMA-Related Kinase 1/antagonists & inhibitors , NIMA-Related Kinase 1/genetics , NIMA-Related Kinase 1/metabolism , Phosphorylation/drug effects , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
16.
PLoS Negl Trop Dis ; 11(2): e0005363, 2017 02.
Article in English | MEDLINE | ID: mdl-28231241

ABSTRACT

The teratogenic mechanisms triggered by ZIKV are still obscure due to the lack of a suitable animal model. Here we present a mouse model of developmental disruption induced by ZIKV hematogenic infection. The model utilizes immunocompetent animals from wild-type FVB/NJ and C57BL/6J strains, providing a better analogy to the human condition than approaches involving immunodeficient, genetically modified animals, or direct ZIKV injection into the brain. When injected via the jugular vein into the blood of pregnant females harboring conceptuses from early gastrulation to organogenesis stages, akin to the human second and fifth week of pregnancy, ZIKV infects maternal tissues, placentas and embryos/fetuses. Early exposure to ZIKV at developmental day 5 (second week in humans) produced complex manifestations of anterior and posterior dysraphia and hydrocephalus, as well as severe malformations and delayed development in 10.5 days post-coitum (dpc) embryos. Exposure to the virus at 7.5-9.5 dpc induces intra-amniotic hemorrhage, widespread edema, and vascular rarefaction, often prominent in the cephalic region. At these stages, most affected embryos/fetuses displayed gross malformations and/or intrauterine growth restriction (IUGR), rather than isolated microcephaly. Disrupted conceptuses failed to achieve normal developmental landmarks and died in utero. Importantly, this is the only model so far to display dysraphia and hydrocephalus, the harbinger of microcephaly in humans, as well as arthrogryposis, a set of abnormal joint postures observed in the human setting. Late exposure to ZIKV at 12.5 dpc failed to produce noticeable malformations. We have thus characterized a developmental window of opportunity for ZIKV-induced teratogenesis encompassing early gastrulation, neurulation and early organogenesis stages. This should not, however, be interpreted as evidence for any safe developmental windows for ZIKV exposure. Late developmental abnormalities correlated with damage to the placenta, particularly to the labyrinthine layer, suggesting that circulatory changes are integral to the altered phenotypes.


Subject(s)
Arthrogryposis/virology , Disease Models, Animal , Hydrocephalus/virology , Pregnancy Complications, Infectious/virology , Zika Virus Infection/virology , Zika Virus/physiology , Animals , Arthrogryposis/embryology , Arthrogryposis/immunology , Arthrogryposis/pathology , Female , Humans , Hydrocephalus/embryology , Hydrocephalus/immunology , Hydrocephalus/pathology , Male , Mice , Mice, Inbred C57BL , Placenta/abnormalities , Placenta/immunology , Placenta/virology , Pregnancy , Pregnancy Complications, Infectious/immunology , Pregnancy Complications, Infectious/pathology , Teratogens/analysis , Zika Virus Infection/embryology , Zika Virus Infection/immunology , Zika Virus Infection/pathology
17.
J Proteomics ; 151: 293-301, 2017 01 16.
Article in English | MEDLINE | ID: mdl-27222040

ABSTRACT

Oligodendrocytes produce and maintain the myelin sheath of axons in the central nervous system. Because misassembled myelin sheaths have been associated with brain disorders such as multiple sclerosis and schizophrenia, recent advances have been made towards the description of the oligodendrocyte proteome. The identification of splice variants represented in the proteome is as important as determining the level of oligodendrocyte-associated proteins. Here, we used an oligodendrocyte proteome dataset deposited in ProteomeXchange to search against a customized protein sequence file containing computationally predicted splice variants. Our approach resulted in the identification of 39 splice variants, including one variant from the GTPase KRAS gene and another from the human glutaminase gene family. We also detected the mRNA expression of five selected splice variants and demonstrated that a fraction of these have their canonical proteins participating in direct protein-protein interactions. In conclusion, we believe our findings contribute to the molecular characterization of oligodendrocytes and may encourage other research groups working with central nervous system disorders to investigate the biological significance of these splice variants. The splice variants identified in this study may encode proteins that could be targeted in novel treatment strategies and diagnostic methods. SIGNIFICANCE: Several disorders of the central nervous system (CNS) are associated with misassembled myelin sheaths, which are produced and maintained by oligodendrocytes (OL). Recently, the OL proteome has been explored to identify key proteins and molecular functions associated with CNS disorders. We developed an innovative approach to select, with a higher level of confidence, a relevant list of splice variants from a proteome dataset and detected the mRNA expression of five selected variants: EEF1D, KRAS, MFF, SDR39U1, and SUGT1. We also described splice variants extracted from OL proteome data. Among the splice variants identified, some are from genes previously linked to CNS and related disorders. Our findings may contribute to oligodendrocyte characterization and encourage other research groups to investigate the biological role of splice variants and to improve current treatments and diagnostic methods for CNS disorders.


Subject(s)
Alternative Splicing , Central Nervous System Diseases/genetics , Oligodendroglia/chemistry , Proteome/analysis , Biomarkers , Central Nervous System Diseases/diagnosis , Central Nervous System Diseases/therapy , Databases, Protein , Glutaminase/genetics , Humans , Proto-Oncogene Proteins p21(ras)/genetics
19.
J Proteomics ; 108: 78-88, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-24846853

ABSTRACT

Xanthomonas citri subsp. citri (X. citri) is the causative agent of the citrus canker, a disease that affects several citrus plants in Brazil and across the world. Although many studies have demonstrated the importance of genes for infection and pathogenesis in this bacterium, there are no data related to phosphate uptake and assimilation pathways. To identify the proteins that are involved in the phosphate response, we performed a proteomic analysis of X. citri extracts after growth in three culture media with different phosphate concentrations. Using mass spectrometry and bioinformatics analysis, we showed that X. citri conserved orthologous genes from Pho regulon in Escherichia coli, including the two-component system PhoR/PhoB, ATP binding cassette (ABC transporter) Pst for phosphate uptake, and the alkaline phosphatase PhoA. Analysis performed under phosphate starvation provided evidence of the relevance of the Pst system for phosphate uptake, as well as both periplasmic binding proteins, PhoX and PstS, which were formed in high abundance. The results from this study are the first evidence of the Pho regulon activation in X. citri and bring new insights for studies related to the bacterial metabolism and physiology. Biological significance Using proteomics and bioinformatics analysis we showed for the first time that the phytopathogenic bacterium X. citri conserves a set of proteins that belong to the Pho regulon, which are induced during phosphate starvation. The most relevant in terms of conservation and up-regulation were the periplasmic-binding proteins PstS and PhoX from the ABC transporter PstSBAC for phosphate, the two-component system composed by PhoR/PhoB and the alkaline phosphatase PhoA.


Subject(s)
ATP-Binding Cassette Transporters , Phosphate-Binding Proteins , Proteome , Proteomics , Regulon/physiology , Xanthomonas , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Mass Spectrometry , Phosphate-Binding Proteins/genetics , Phosphate-Binding Proteins/metabolism , Phosphates/metabolism , Proteome/genetics , Proteome/metabolism , Species Specificity , Xanthomonas/genetics , Xanthomonas/metabolism
20.
J Proteome Res ; 13(4): 2080-93, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24625128

ABSTRACT

ADAM17 has been initially identified as the main sheddase responsible for releasing the soluble form of a variety of cell-surface proteins, including growth factors, cytokines, cell adhesion molecules, and receptors, most of which are associated with pathological processes, including cancer and inflammation. However, the function and composition of the ADAM17-dependent secretome on a proteome-wide scale is poorly understood. In this study, we observed that the ADAM17-dependent secretome plays an important role in promoting cell proliferation and migration. To further demonstrate the repertoire of proteins involved in this cross-talk, we employed mass-spectrometry-based proteomics using nonmetabolic and metabolic labeling approaches to explore the secretome composition of wild-type and ADAM17(-/-) knockout mouse embryonic fibroblast (mEF) cells. Bioinformatic analyses indicated the differential regulation of 277 soluble proteins in the ADAM17-dependent secretome as well as novel direct ADAM17 cleavage substrates, such as mimecan and perlecan. Furthermore, we found that the ADAM17-dependent secretome promoted an opposite regulation of ERK and FAK pathways as well as PPARγ downstream activation. These findings demonstrated fine-tuning of cell signaling rendered by the soluble molecules mediated by ADAM17.


Subject(s)
ADAM Proteins/metabolism , ADAM Proteins/physiology , Proteome/analysis , Signal Transduction/physiology , ADAM Proteins/genetics , ADAM17 Protein , Animals , Cell Movement/genetics , Cell Proliferation/genetics , Cells, Cultured , Gene Knockout Techniques , Isotope Labeling , Mice , Proteome/genetics , Proteome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...